Microphones 101 - A Brief Guide

Introduction

If microphones seem a mystery, a few minutes reading this guide may help clear up some misconceptions and assist you in understanding the differences between various microphone types and the advantages of important microphone features.

The fact is, microphones are simple devices. And if you know the meaning of just a few key terms, you are well on your way to becoming a microphone expert. With this basic knowledge under your belt, it will be easier to select the right model for almost any application.

Although there are many kinds of microphones for many uses, we will concentrate on those models most suited for high-quality recording, broadcasting and sound reinforcement. We’ll skip over the most common microphone of them all (the one in your phone) and many specialised types used for CB radio, industry and other similar areas.

Contents

1. What A Microphone Does

Find out about Dynamic Microphones, Condenser Microphones, Phantom Power for Condenser Mics as well as Other Types of Microphones.
2. What's the Pattern?
Omnidirectional, Directional, Representing Polar Patterns, Distance Factor, Line Microphones, How Do They Sound? Proximity Effect, Which Pattern is "Best"?

3. Important Microphone Characteristics
Find out about Impedance, Balanced Output, Microphone Phasing and Sensitivity.

4. Two Common Problems
Find out about Feedback and Acoustic Phase Interference.

5. Some Basic Concepts

6. Miking Musical Instruments
How to mic a Grand Piano, Upright Piano and Acoustic Guitars.
What A Microphone Does

Like phono cartridges, headphones and loudspeakers, the microphone is a transducer—in other words, an energy converter. It senses acoustic energy (sound) and translates it into equivalent electrical energy. Amplified and sent to a loudspeaker or headphone, the sound picked up by the microphone transducer should emerge from the speaker transducer with no significant changes.

How a Microphone Works

While there are many ways to convert sound into electrical energy, we'll concentrate on the two most popular methods: dynamic and condenser. These are the types of microphones most often found in recording studios, broadcast, motion picture video production, and on stages for live sound reinforcement.

Why Microphone Selection is Important

The microphone is, by its nature, at the very beginning of most sound systems and recording applications. If the mic can’t capture the sound clearly and accurately, and with low noise, even the best electronics and speakers following it won’t produce the optimum sound. So it’s important to invest in good microphones, to maximise sound-system performance potential.

FIGURE 1 - Dynamic Microphone Element

Dynamic Microphones

Comparing microphones to loudspeakers may help you to understand their operation. Dynamic microphones are similar to conventional loudspeakers in most respects. Both have a diaphragm (or cone) with a voice coil (a long coil of wire) attached near the apex. Both have a magnetic system with the coil in its gap. The difference is in how they are used.

With a speaker, current from the amplifier flows through the coil. The magnetic field created by current flowing through the voice coil interacts with the magnetic field of the speaker’s magnet, forcing the coil and attached cone to move back and forth, producing sound output.
A dynamic microphone operates like a speaker in reverse. The diaphragm is moved by changing sound pressure. This moves the coil, which causes current to flow as lines of flux from the magnet are cut. So, instead of putting electrical energy into the coil (as in a speaker) you get energy out of it. In fact, many intercom systems use small speakers with lightweight cones as both speaker and microphone, by simply switching the same transducer from one end of the amplifier to the other! A speaker doesn't make a great microphone, but it's good enough for that application.

Dynamic microphones are renowned for their ruggedness and reliability. They need no batteries or external power supplies. They are capable of smooth, extended response, or are available with "tailored" response for special applications. Output level is high enough to work directly into most microphone inputs with an excellent signal-to-noise ratio. They need little or no regular maintenance, and with reasonable care will maintain their performance for many years.

FIGURE 2 - Electret Condenser Element

Condenser Microphones

Condenser (or capacitor) microphones use a lightweight membrane and a fixed plate that act as opposite sides of a capacitor. Sound pressure against this thin polymer film causes it to move. This movement changes the capacitance of the circuit, creating a changing electrical output. (In many respects a condenser microphone functions in the same manner as an electrostatic tweeter, although on a much smaller scale and "in reverse").

Condenser microphones are preferred for their very uniform frequency response and ability to respond with clarity to transient sounds. The low mass of the membrane diaphragm permits extended high-frequency response, while the nature of the design also ensures outstanding low-frequency pickup. The resulting sound is natural, clean and clear, with excellent transparency and detail.

Two basic types of condenser microphones are currently available. One uses an external power supply to provide the polarising voltage needed for the capacitive circuit. These externally-polarised microphones are intended primarily for professional studio use or other extremely critical applications.

A more recent development is the electret condenser microphone (Fig.2). In these models, the polarising voltage is impressed on either the diaphragm or the back plate during the manufacturing process, and this charge remains for the life of the microphone.
The best electret condenser microphones are capable of very high-quality performance, and are used extensively in broadcast, recording and sound reinforcement.

Due in part to their low-mass diaphragms, condenser microphones are inherently lower in handling or mechanical noise than dynamic microphones. For all of its electret condenser designs, Audio-Technica has elected to apply the polarising voltage, or fixed-charge, to the back plate rather than the diaphragm. By doing this, a thinner material may be used for the diaphragm, providing a considerable performance advantage over electret microphones of conventional design. Many Audio-Technica microphone diaphragms, for example, are only 2 microns thick (less than 1/10,000th of an inch)!

Condenser microphones have two other design advantages that make them the ideal (or the only) choice for many applications: they weigh much less than dynamic elements, and they can be much smaller. These characteristics make them the logical choice for line – or "shotgun" – microphones, lavaliers and miniature microphones of all types.

Attempts at miniaturising dynamic microphones result in greatly reduced low-frequency response, overall loss in acoustic sensitivity, and higher mechanical or handling noise.

Phantom Power for Condenser Microphones

While the electret condenser microphone doesn't need a power supply to provide polarising voltage, an FET impedance matching circuit inside the microphone does require some power. This may be supplied by a small low-voltage internal battery or by an external "phantom" supply.

Phantom powering is a technique which delivers a DC voltage to the microphone through the same shielded two-conductor cable that carries the audio from the mic. The phantom power may be supplied either by the mic mixer or from an external supply that is inserted into the line between the microphone and mixer input. For phantom power to function, the line between the power supply and the microphone must be balanced to ground, and uninterrupted by such devices as filters or transformers which might pass the audio signal but block DC. Phantom power also requires a continuous ground connection (Pin 1 in the XLR-type connector) from the power supply to the microphone. The supply delivers positive DC voltage equally to both signal-conducting leads, and uses the shield as a return path, or negative. Balanced-output dynamic microphones are not affected by the presence of phantom power since there is no connection between the shield and either signal lead and, therefore, no circuit for the DC voltage. While the application of phantom power is prohibited for most ribbon microphones, Audio-Technica's ribbon microphones require phantom power for operation.

Phantom power supplies are available in various output voltages ranging from as low as 9 volts up to 48 volts. They may be designed to operate from AC line voltages or from internal batteries.

Externally polarised or "discrete" condenser microphones seldom have internal battery power. Instead, a phantom power source is used to provide both the polarising voltage for the element and to power the impedance converter. This type is sometimes called a "pure condenser."
Other Types of Microphones

There are a number of ways to translate sound into electrical energy. Carbon granules are used as elements in telephones and communications microphones. And some low-cost microphones use crystal or ceramic elements that are generally OK for speech, but are not seriously considered for music or critical sound reproduction.

Ribbon Microphones

The ribbon offers the purest form of transduction: a thin strip of aluminum moves between two magnets, inducing voltage. Prized for their distinctive warm sound, ribbon mics traditionally were quite fragile; there were also widespread problems with compatibility.

To increase the durability of the ribbon microphone Audio-Technica developed a patent-pending forming process that protects the dual ribbons from lateral flexing and distortion; there is no need to store the mics vertically as is recommended for many ribbon microphones. For increased sensitivity, the Audio-Technica ribbon cartridge features a dual-ribbon design: the two ribbons are suspended between the top and bottom edges of extremely powerful N50 rare earth magnets.

A longstanding problem with old-school ribbons is that they could be harmed by exposure to phantom power. Audio-Technica ribbon microphones require 48V phantom power for operation. We use the phantom power – not for each microphone’s dynamic ribbon transducer – but for its active electronics, which bring its output to near condenser microphone level. This higher output and stable impedance offer maximum compatibility with microphone preamplifiers.

Increasingly popular for broadcast, studio and live applications, ribbon microphones are often designed to respond to sound from both the front and back, and are sometimes used when a bidirectional pickup pattern is required – which brings us to the next major microphone classification.

What’s the Pattern?

In addition to classifying microphones by their generating elements, they can also be identified by their directional properties, that is, how well they pick up sound from various directions. Most microphones can be placed in one of two main groups: omnidirectional and directional. Omnidirectional microphones are the simplest to design, build and understand. They also serve as a reference against which each of the others may be compared.
Omnidirectional

Omnidirectional microphones pick up sound from just about every direction equally. They'll work about as well pointed away from the subject as pointed toward it, if the distances are equal. However, even the best omni models tend to become directional at higher frequencies, so sound arriving from the back may seem a bit "duller" than sound from the front, although apparently equally "loud."

The physical size of the omnidirectional microphone has a direct bearing on how well the microphone maintains its omnidirectional characteristics at very high frequencies. The body of the microphone simply blocks the shorter high-frequency wavelengths that arrive from the rear. The smaller the microphone body diameter, therefore, the closer the microphone can come to being truly omnidirectional.

Directional

Directional microphones are specially designed to respond best to sound from the front (and rear in the case of bidirectionals), while tending to reject sound that arrives from other directions. This effect also varies with frequency, and only the better microphones are able to provide uniform rejection over a wide range of frequencies. This directional ability is usually the result of external openings and internal passages in the microphone that allow sound to reach both sides of the diaphragm in a carefully controlled way. Sound arriving from the front of the microphone will aid diaphragm motion, while sound arriving from the side or rear will cancel diaphragm motion.

The basic directional types include cardioid, subcardioid, hypercardioid and bidirectional. Also included under the general heading of directional microphones is the line – or "shotgun" – microphone, a more complex design that can provide considerably higher directionality than the four basic directional types.
Representing Polar Patterns

To help you visualise how a directional microphone works, you will find polar patterns in our literature and spec sheets. These round plots show the relative sensitivity of the microphone (in dB) as it rotates in front of a fixed sound source. You can also think of them as a horizontal "slice" through the pickup patterns illustrated in Figures 3 and 4.

Printed plots of the microphone polar response are usually shown at various frequencies. The most common directional microphones exhibit a heart-shaped polar pattern, and, as a result, are called "cardioid" microphones.

Polar patterns should not be taken literally as a "floor plan" of a microphone's response. For instance, in the cardioid pattern illustrated, response is down about 6 dB at 90° off-axis. It may not look like much in the pattern, but if two persons were speaking equidistant from the microphone, one directly on-axis and the other at 90°, the person off-axis would sound as if he were twice as far from the microphone as the person at the front. To get equal volume, he would have to move to half the distance from the mic.

A word of caution: these polar patterns are run in an anechoic chamber, which simulates an ideal acoustic environment – one with no walls, ceiling or floor. In the real world, walls and other surfaces will reflect sound quite readily, so that off-axis sound can bounce off a nearby surface and right into the front of the microphone. As a result, you'll rarely enjoy all of the directional capability built into the microphone. Even if cardioid microphones were completely "dead" at the back (which they never are), sounds from the rear, also reflected from nearby surfaces, would still arrive partially from the sides or front. So cardioid microphones can help reduce unwanted sound, but rarely can they eliminate it entirely. Even so, a cardioid microphone can reduce noise from off-axis directions by about two-thirds.
The directional microphone illustrated in Fig. 5 is about 20 dB less sensitive at 180° off-axis, compared to on-axis. This means that by rotating the cardioid microphone 180°, so that it faces directly away from the sound source, the sound will "look" to the microphone as if it had moved TEN TIMES farther away!

FIGURE 6: Basic Polar Patterns

![Polar Patterns Diagram](image)

The maximum angle within which the microphone may be expected to offer uniform sensitivity is called its acceptance angle. As can be seen in Fig. 6, each of the directional patterns offers a different acceptance angle. This will often vary with frequency. One of the characteristics of a high-quality microphone is a polar pattern which changes very little when plotted at different frequencies.

Distance Factor

A directional microphone's ability to reject much of the sound that arrives from off-axis provides a greater working distance or "distance factor" than an omni. As Fig. 6 shows, the distance factor
(DF) for a cardioid is 1.7 while the omni is 1.0. This means that if an omni is used in a uniformly noisy environment to pick up a desired sound that is 10" away, a cardioid used at 17" from the sound source should provide the same results in terms of the ratio of desired signal to ambient noise. Among other microphone types, the subcardioid should do equally well at 12", the hypercardioid at 20" and the bidirectional at 17".

If the unwanted noise is arriving from one direction only, however, and the microphone can be positioned to place the null (minimum point) of the pattern toward the noise, directional microphones will offer much greater working distances.

FIGURE 7: Line + Gradient Microphone

Line Microphones

When miking must be done from even greater distances, line or "shotgun" microphones are often the best choice. Line microphones are excellent for use in video and film, in order to pick up sound when the microphone must be located outside the frame, that is, out of the viewing angle of the camera.

The line microphone uses an interference tube in front of the element to ensure much greater cancellation of sound arriving from the sides. Audio-Technica line microphones combine a directional ("gradient") element with the interference tube to increase cancellation at the rear as well.

As a general design rule, the interference tube of a line microphone must be lengthened to narrow the acceptance angle and increase the working distance. While shorter line microphones may not provide as great a working distance as their longer counterparts, their wider acceptance angle is preferred for some applications, because aiming does not need to be precise. Some A-T shotgun mics employ an exclusive design (U.S. Patent No. 4,789,044) that provides the same performance with an interference tube one-third shorter than conventional designs.

How Do They Sound?

From a distance of two feet or so, in an absolutely "dead" room, a good omni and a good cardioid may sound very similar. But put the pair side-by-side in a "live" room (a large church or auditorium, for instance) and you'll hear an immediate difference. The omni will pick up all of the reverberation and echoes – the sound will be very "live." The cardioid will also pick up some reverberation, but a great deal less, so its sound will not change as much compared to the "dead" room sound. (This is the "Distance Factor" in action.)
If you are in a very noisy environment, and can point the microphone away from the noise, a
comparison will show a better ratio of wanted to unwanted sound with the cardioid than with
the omni.

FIGURE 8: Influence of Proximity Effect on Directional Microphone Response

Proximity Effect

Now let's repeat the comparison from above, but this time with the microphones very close to
the source (a singer, perhaps). As you get within about two inches, you'll notice a rising bass
response in most cardioid microphones. This is known as proximity effect, a characteristic that is
not shared with the omni microphone used for comparison.

Proximity effect can either be a blessing or a curse, depending on how it is used. A singer can get
a deep, earthy sound by singing very close, then change to a more penetrating sound by singing
louder while moving the microphone away. This kind of creative use takes some practice, but is
very effective. On the other hand, singing at the same volume (with no special effects desired)
and moving the microphone in and out will create problems of tonal balance, apart from changes
in overall mic level. Some performers also like to work very close at all times to "beef up" an
ordinarily "light" voice.

Proximity effect can be used effectively to cut feedback in a sound reinforcement situation. If
the performer works very close to the mic, and doesn't need the extra bass, an equaliser can be
used to turn down the channel's bass response. This makes the microphone less sensitive to
feedback at low frequencies, since it is now less sensitive to any low-frequency signal arriving
from more than a foot away. (This equalisation technique also will help reduce the effect of any
handling noise.)

Which Pattern Is Best?

Whether you should select a directional or omnidirectional microphone can depend on the
application (recording vs. sound reinforcement), the acoustic conditions, the working distance
required and the kind of sound you wish to achieve. Directional microphones can suppress
unwanted noise, reduce the effects of reverberation and increase gain-before-feedback. But in
good acoustic surroundings, omnidirectional microphones, properly placed, can preserve the
"sound" of the recording location, and are often preferred for their flatness of response and
freedom from proximity effect.
Omnidirectional microphones are normally better at resisting wind noise and mechanical or handling noise than directional microphones. Omnis are also less susceptible to "popping" caused by certain explosive consonants in speech, such as "p," "b" and "t." Serious recordists will undoubtedly want to have both types of microphones available to be ready for every recording situation.

Important Microphone Characteristics

Impedance

One important characteristic of a microphone is its output impedance. This is a measurement of the AC resistance looking back into the microphone. Generally, microphones can be divided into low (50-1,000 ohms), medium (5,000-15,000 ohms) and high (20,000+ ohms) impedance. Most Audio-Technica microphones are rated low-impedance. They'll work directly into mixer inputs of 150 ohms on up to approximately 4,000 ohms, so they should be ideal for most of the tape recorders and mixers currently available. Of course, some users may want to use a low-impedance Audio-Technica microphone into a high-impedance (50,000 ohms) input, which is why we offer the CP8201 microphone line matching transformer. It should be located as close to the electronic input as possible, so most of the microphone cable is low-impedance and balanced to ground. Here's why:

There is a limit to how much cable should be used between a high-impedance microphone and its input. Any more than about 20 feet will result in a loss of highs, and loss of output level. But by using low-impedance microphones and cable, microphone cables can be almost any practical length, with no serious losses of any kind.

Balanced Output

Most Audio-Technica microphones offer balanced output. A balanced output offers real advantages to the serious recordist. Balanced lines are much less susceptible to RFI (Radio Frequency Interference) and the pickup of the other electrical noise and hum. In a balanced line, the shield of the cable is connected to ground, and the audio signal appears across the two inner wires which are not connected to ground. Because signal currents are flowing in opposite directions at any given moment in the pair of signal wires, noise which is common to both is effectively cancelled out ("common mode rejection"). This cancellation can't occur when only one signal wire plus the shield is used. Of course, it is possible to wire a low-impedance microphone directly to an unbalanced low-impedance input, but the noise-cancelling benefit will be lost. This should not be a problem with short cable runs, but if longer cables are used, a balanced input is preferred.
Microphone Phasing

Microphone phasing is most important when two (or more) microphones are to be used close together, then mixed into a single channel, or when recording in stereo. If they are wired out-of-phase to each other, signal levels and tonal balance will be adversely affected, and can change abruptly with small movements of the sound source or the microphones. In stereo there may be poor imaging, imprecise location of instruments and reduction of bass. The term "out-of-phase" is used to describe a microphone that is wired with its polarity reversed with respect to another. While "out-of-phase" is not a technically correct expression when speaking of polarity reversal, it is in such common usage that we include it here to help you understand the idioms of audio.

Audio-Technica wires its microphones to conform to the most popular industry convention: Positive acoustic pressure on the diaphragm generates a positive voltage on Pin 2 of the 3-pin output connector or on the tip of a 1/4” plug. Of course, consistent phasing (polarity) must be preserved in all of the cables between the microphone(s) and the electronics.

Sensitivity

Sensitivity ratings for microphones may not be exactly comparable, since different manufacturers may use different rating systems. Typically, the microphone output (in a sound field of specified intensity) is stated in dB (decibels) compared to a reference level. Most reference levels are well above the output level of the microphone, so the resulting number (in dB) will be negative. Thus a microphone with a sensitivity rating of -55 dB will provide more signal to the input terminals than one rated at -60 dB. (See Fig. 10.)

Audio-Technica typically rates a microphone's sensitivity in terms of its open circuit output voltage. Stated in dB-relative-to-1-volt, or in actual millivolts (mV), this is the output the microphone will deliver with a stated sound pressure level (SPL) input. A-T uses a reference
sound pressure of 1 Pa (Pascal), which equals 94 dB SPL, or 10 dynes/cm². (A reference of 0.1 Pa equals 74 dB SPL, or 1 dyne/cm².) In most modern audio equipment, microphone input impedances are substantially greater than the output impedance of the microphone, and thus may be regarded as an open circuit. That makes the open circuit voltage measurement a useful tool in comparing microphone sensitivities.

Although knowing how to read/compare microphone sensitivity (output) is important, the actual sensitivity rating usually is not a major consideration in mic selection. In fact, mic output is one factor considered in the design of a microphone for a particular application. For example, A-T shotgun mics have higher-than-"normal" output levels because they need to maintain useable output voltage with distant subjects.

It should be noted, however, that when someone says, "The microphone is distorting," most often it is the electronics input (mixer/amplifier/recorder) which is overloading and distorting. (This is more likely to occur with A-T's high-output condenser mics and Hi-ENERGY® neodymium-magnet dynamic mics.) If high-level sound is creating distortion, before blaming the microphone, try inserting an attenuator between the microphone and its input. The Audio-Technica AT8202, designed for use with balanced Lo-Z microphones, offers a selector switch to drop the level 10, 20 or 30 dB, and will usually solve the problem. (Some mixers have a switchable "input pad" to help prevent input overload.)

Two Common Problems

Feedback

Feedback is a condition in a sound-reinforcement application when the sound picked up by the microphone is amplified, radiated by a speaker, then picked up again, only to be re-amplified. Eventually the system starts to ring, and keeps howling until the volume is reduced. Feedback occurs when the sound from the loudspeaker arrives at the microphone as loud or louder than the sound arriving directly from the original sound source (talker, singer, etc.).

The right microphone will reduce the problem. A microphone without peaks in its response is best, as feedback will occur most easily at the frequencies where peaks exist. While a good omni might work well in some situations, a cardioid is almost always preferred where a high potential for feedback exists. When the loudspeaker sound comes primarily from a single direction (rather than mainly reflected from all the walls, ceiling, etc.), the null of a cardioid (or other directional pattern) microphone can be aimed to minimise pickup of the loudspeaker's sound.

Distance is also a factor. Moving the microphone (or speaker) to lengthen the acoustic path to the loudspeaker can often reduce feedback. Bringing the microphone closer to the intended sound source will also help. And in general, the microphone should always be located behind the speakers.
Acoustic Phase Interference

Acoustic Phase Interference - Multiple Microphones

Acoustic phase interference occurs when the same sound arrives at two or more adjacent microphones at different times. This happens, for example, when two microphones are placed on a lectern as in Fig. 11. Because they are spaced apart, sound from the subject will almost certainly arrive at the two microphones at different times. The curves in Fig. 12 show the effects of the destructive wave interferences this causes when the microphone outputs are mixed together. These response degradations can result in not only poor audio quality, but often feedback problems as well.

An obvious solution to this lectern-mic problem would be to use only one microphone. This not only improves the sound quality, but cuts the lectern microphone budget by approximately 50 percent! (Sometimes a second microphone may be desired as part of a backup or "redundancy" system, such as for press conferences. The two microphones should then be located directly in front of the subject, as close together as practical, and only one should be on or "open" at a time.)
Fig. 13 shows another approach to podium miking with two microphones. Here the two mics are placed with their capsules as close together as possible, and angled in a "crossfire." This provides a wider overall acceptance angle, allows stereo miking with excellent mono compatibility, and largely avoids the phase-interference problem.

FIGURE 14: The 3:1 Ratio Rule

Whenever two spaced microphones must be used, the "3:1 ('3-to-1') Ratio Rule" is a good guide for placement. Fig. 14 illustrates this rule of thumb. In the illustration, Microphone 1 is one foot from the sound source. The next closest microphone in the system, Microphone 2, should be located three feet or more from Microphone 1. If the distance between the sound source and Microphone 1 changes to two feet, then the minimum distance between the two microphones should be at least six feet, maintaining the 3:1 ratio.

FIGURE 15: Effects of Reflection

- Reflected sound arrives later than direct sound, causing phase cancellation.
- A-T Boundary Microphone

Direct and reflected sounds arrive at same time ("in phase") and add together. Result is higher output and no phase cancellation.
Acoustic Phase Interference - Single Microphone

Acoustic phase interference may also occur when only a single microphone is in use. This happens when sound is reflected off a nearby surface and arrives at the microphone slightly after the direct sound. The adding together of the two signals may give problems similar to those encountered in improper multi-microphone setups. (The phase interference will be most noticeable when the reflected sound arrives at a sound pressure level that is within 9 dB of the direct sound.)

There are several ways to eliminate this problem. First, try putting the microphone closer to the sound source. Second, move the microphone farther from the reflective surface. Third, use a microphone specially configured to be placed extremely close to the reflective plane (Fig. 15). When using a low-profile directional Audio-Technica boundary or "plate" microphone, for example, the microphone capsule is so close to the surface that the direct sound and the reflected sound arrive simultaneously and add together rather than cancel. This technique can prove very helpful on the apron of a stage, on a table or desk for conference use, or on the altar of a church.

Some Basic Concepts

The Basic Sound System

The sound system begins at the microphones where acoustic sound is converted into an electrical signal. Our example below has four microphones - one for the podium, one for the piano and two for the choir (Fig. 1). The microphones are connected to an audio mixer where their input signals are amplified, adjusted and combined to produce a single output signal. (Note that if an auxiliary phantom power source for the mics is required, it must be placed between the microphones and the mixer.)

FIGURE 1: Example of a Multi-microphone Sound System
From the mixer, the output signal is sent to a power amplifier. The amplifier strengthens the signal further, making it powerful enough to drive loudspeakers, which convert the microphone signals back into acoustic sound.

Why Condenser Microphones

One way microphones are classified is by how they convert sound energy to an electrical signal. The most common types are "dynamic" and "condenser." In a place of worship, condenser microphones offer a number of advantages over dynamics. First, condenser microphones can be made much smaller (and less conspicuous) than dynamics without compromising performance. They also have higher sensitivity for excellent pickup, even at the distances required by hanging choir mics. They have lower handling noise than dynamics, and their extended frequency response provides a crisper, more accurate reproduction of sound. Finally, condenser mics have superior "transient response" for accurately reproducing sudden sonic impulses such as those produced by voice, piano and percussion.

Condenser microphones require a power source for their internal electronics. Some models can receive power from an internal battery. Others may be "phantom" or "remote" powered. Phantom power supplies, built into some mixers and also available as Audio-Technica accessories, deliver low DC voltage to the microphone over the same 2-conductor shielded cable used to carry the microphone's output signal. Phantom power has no effect on the sound of the system.

Why Unidirectional Microphones

Another way to identify microphones is by their directional properties, that is, how much sound they pick up from various directions.

"Omnidirectional" microphones pick up sound almost equally well from all directions (Fig. 2). While they must be used close to the sound source wherever feedback is a possibility, "omnis" offer reduced sensitivity to handling noise and breath blasts, making them ideal for many clip-on mic applications.

In a place of worship, however, most applications are better served by unidirectional types of microphones described as "cardioid" (Fig. 3). These microphones pick up sound best within a 120° conical area at their front called the "acceptance angle." Outside the acceptance angle, microphone sensitivity is reduced. A sound source located at a 90° angle to the side of the microphone will seem to be twice the distance away as the same source located directly in front.

FIGURE 2 & 3: Omnidirectional Microphone (left) and Unidirectional (Cardioid) Microphone (right)

audio-technica
And, when the same source is directly to the rear of the microphone (at the angle of minimum sensitivity, or "null"), it will seem to be about 10 times as far away.

By pointing the microphone directly at the desired sound source, with the null of the microphone facing any unwanted sound (such as a sound reinforcement loudspeaker), problems with feedback and echo will be reduced. The result is improved intelligibility of speech at a greater "working distance."

FIGURE 4: Basic Polar Patterns

Hypercardioid models extend the working distance farther, with their 100° acceptance angle providing greater rejection of sound from the sides. Even more side cancellation is offered by A-T MicroLine® models. Their narrow 90° acceptance angle and higher output make them a good choice for more distant pickup of sound. They also improve clarity in reverberant or otherwise noisy environments. Figure 4 summarises the performance of different pickup patterns.
Miking Musical Instruments

Grand Piano | Upright Piano | Acoustic Guitar

FIGURE 13a

Grand Piano

The piano is one of the most demanding instruments to record or reinforce accurately. The microphone selected should have a very flat, extended frequency response and excellent transient response.

Ideal microphone placement for piano depends greatly on acoustics and the potential for either feedback or the pickup of unwanted nearby sounds ("leakage"). While a grand piano is designed to be heard from a few feet or more away, isolating the piano sound requires getting close. Place a mono or stereo microphone about two feet above the strings (Fig. 13a). For greater isolation, lower the microphone to within six to eight inches of the strings.

FIGURE 13b & 13c

If the lid is lowered to the short stick, place the microphone just outside the piano, near the curve. Move it toward the keyboard for a brighter sound, away from it for more emphasis on the low end.
For close-up stereo miking, use two microphones inside the piano with the lid raised. Center one mic over the low strings and the other over the high strings (Fig. 13b). Or the microphones may be centered about midway between the low and high strings (Fig. 13c). In either case, both mics should be six to eight inches above the strings.

FIGURE 13d

As another alternative, one boundary (plate) microphone -- or two for stereo -- may be mounted inside the piano. They may be permanently attached to the underside of the lid, or placed on temporary "bridges" of duct tape affixed to the metal ribs over the strings (Fig. 13d). Taping down the mic cables to prevent buzzing against parts of the piano may be helpful. With either boundary-mic approach, the choice of microphones and the considerable mechanical and sonic differences between pianos usually require some experimentation with mic placement to achieve the desired acoustic character and balance. These boundary-mic techniques are often a good choice when the piano lid must be closed; they also offer good control over leakage of other sound sources into the piano mic when recording.

FIGURE 14

Upright Piano

Because the upright piano is a large instrument, two microphones spaced about six to eighteen inches behind the sound board are recommended. They should be far enough apart so that one picks up sound from the high strings, while the other picks up the low notes (Fig. 14). In stereo recording, the two microphone outputs should be "panned" slightly left and right at the console.
If greater isolation of the piano sound is needed, try removing the lower front cover (below the keyboard) and positioning a single microphone facing slightly upward, away from the pedals, and somewhat nearer the high strings.

Acoustic Guitar

FIGURE 15

For close-up perspective and minimum feedback, A-T offers a miniature cardioid condenser microphone that mounts directly on the guitar with an adjustable clamp adapter. The microphone’s frequency response is specially tailored for this location, resulting in excellent control and well-balanced sound. Another approach is to use a wide-response cardioid condenser microphone on a stand or short boom, with the microphone pointing at the bridge of the guitar. If ultra-close miking is needed, avoid placing the mic too close to, or directly facing, the sound hole to avoid a “tubby” sound.